Modeling and detection of the prepared tool edge radius

Author:

Xuefeng Zhao1ORCID,Hui Li1,Lin He1,Meng Tao1

Affiliation:

1. Mechanical Engineering College, Guizhou University, Guiyang, China

Abstract

Introduction: High-speed and high-efficient machining is the inevitable development direction of machining technology. The tool edge preparation can improve the life, cutting performance, and surface quality of a tool and help to achieve high-speed and efficient machining. Therefore, precise modeling and detection of the micron-level contour of a tool edge are crucial for edge preparation. The aim of this study is to provide the model and detect method of the prepared tool edge radius. Methods: The mathematical model of the milling tool trajectory is established through the Matlab. The material removal model by single abrasive particle is established based on the energy conservation principle and energy absorption theory. The material removal model by multiple abrasive grains on the cutting tool edge is constructed using the statistical methods. The mathematical model of the edge radius is established through the geometrical relationship. The milling edge preparation contour detection system is setup based on the machine vision principle through LabVIEW software. Finally, the edge radius at different process parameters is determined by the mathematical model and detection system, and the results are compared with the results of the scanning electron microscopic measurement (SEM). Results: Through the Comparison and analysis of the edge radius measured by the SEM and calculated by the proposed model. The maximum error between the analytical results and SEM measurements is 11.18 μm, while the minimum error is 0.07 μm. Through the comparison and analysis of the edge radius measured by the SEM and the edge detection system. The maximum difference between the two methods is 2.71 μm, and the minimum difference is 0.31 μm. The maximum difference in percentage is 9.2%, and the minimum difference in percentage is 1.2%. Discussions: The edge preparation mechanisms of a single particle and multiple particles on the tool edge are explained. A mathematical model of the edge radius is established, which provides a basis for a deeper understanding of the edge preparation effect. Based on the machine vision principle, the prepared tool micron-level edge detection method is proposed. The histogram specification method, median filtering, multi-threshold segmentation method, and Canny edge detection operator are adopted to obtain the edge contour. The comparison result shows that the mathematical model of the edge radius is accurate, and the proposed tool edge detection method is feasible, which lays the foundation for edge preparation and realization of high-speed and high-efficient machining.

Funder

Research Fund of High level innovative Talents Project in Guizhou Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3