Building epidemic models for living populations and computer networks

Author:

Kondakci Suleyman1ORCID,Kondakci Dilek Doruk2

Affiliation:

1. Private Practice, Istanbul, Turkey

2. Kalabak Mah., Urla, Izmir, Turkey

Abstract

Accurate modeling of viral outbreaks in living populations and computer networks is a prominent research field. Many researchers are in search for simple and realistic models to manage preventive resources and implement effective measures against hazardous circumstances. The ongoing Covid-19 pandemic has revealed the fact about deficiencies in health resource planning of some countries having relatively high case count and death toll. A unique epidemic model incorporating stochastic processes and queuing theory is presented, which was evaluated by computer simulation using pre-processed data obtained from an urban clinic providing family health services. Covid-19 data from a local corona-center was used as the initial model parameters (e.g. [Formula: see text], infection rate, local population size, number of contacts with infected individuals, and recovery rate). A long–run trend analysis for 1 year was simulated. The results fit well to the current case data of the sample corona center. Effective preventive and reactive resource planning basically depends on accurately designed models, tools, and techniques needed for the prediction of feature threats, risks, and mitigation costs. In order to sufficiently analyze the transmission and recovery dynamics of epidemics it is important to choose concise mathematical models. Hence, a unique stochastic modeling approach tied to queueing theory and computer simulation has been chosen. The methods used here can also serve as a guidance for accurate modeling and classification of stages (or compartments) of epidemics in general.

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3