Analysis of research on metabolic syndrome in cancer survivors using topic modeling and social network analysis

Author:

Kim Ji-Su1ORCID,Kim Hyejin1,Lee Eunkyung2,Seo Yeji3ORCID

Affiliation:

1. Department of Nursing, Chung-Ang University, Seoul, Republic of Korea

2. Department of Nursing, Kyung-In Women's University, Incheon, Republic of Korea

3. Department of Nursing, Semyung University, Jecheon, Chungbuk, Republic of Korea

Abstract

This study aimed to identify the relationships between the keywords of research on metabolic syndrome in cancer survivors and the entire knowledge research structure, through topic extraction from a macro perspective. From six electronic databases, 918 studies published between 1996 and 2019 were identified and reviewed, and 365 were included. Keyword network analysis and topic modeling were applied to examine the studies. In keyword network analysis, “obesity,” “treatment,” “breast cancer,” “body mass index,” and “prostate cancer” were the major keywords, whereas “obesity” and “breast” were the dominant keywords and ranked high in frequency, degree centrality, and betweenness centrality. In topic modeling, five clustered topics emerged, namely metabolic syndrome component, post CTX(chemotherapy) sequence, prostate-specific antigen-sensitive plot, lifestyle formation, and insulin fluctuation. Topic 2, post CTX sequence, showed the highest salience in earlier studies, but this has decreased over time, and the themes of the studies have also broadened. This study may provide critical basic data for determining the changing trends of research on metabolic syndrome in cancer survivors and for predicting the direction of future research through the visualization of the effects and interactions between the major keywords in research on metabolic syndrome in cancer survivors.

Funder

National Research Foundation

Publisher

SAGE Publications

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3