Affiliation:
1. University of Shanghai for Science and Technology, Shanghai, P.R. China
Abstract
A new nonlinear rotor model supported by the rolling bearing is established under the consideration of the bearing with waviness fault, the unbalanced excitation, the nonlinear Hertz contact force, the varying compliance vibration, and, especially, the physical nonlinear stiffness of the shaft material. The expression with cubic nonlinear terms is adopted to characterize the physical nonlinear stiffness of the shaft material, and the sinusoidal wave is applied to describe the shape characteristics of the waviness fault. The dynamic equations of motion for the new model are developed, and the calculation example of the rotor system supported by the bearing JIS6306 is solved by the variable step-size Runge–Kutta methods to study the effect of the waviness, the clearance, the mass eccentricity on the dynamic behavior. The research results show that growth of the amplitude for the waviness changes the energy distribution of the vibration process; the enlargement of bearing clearance will reduce the stability of the system; the increase in the number of the waviness will make the order of the frequency components changed; for the nonlinear stiffness bearing-rotor system with waviness fault, the augment of mass eccentricity will enhance the impact of the nonlinear stiffness on the system.
Funder
national natural science foundation of china
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献