Affiliation:
1. Air Force Aviation University, Changchun, P.R. China
2. Air Force Harbin Flying College, Harbin, P.R. China
Abstract
Metal lithium negative electrodes are considered the “holy grail” of lithium battery negative electrodes due to their ultra-high energy density and low overpotential. However, the arbitrary growth of lithium dendrites during the cycling process hindered its industrialization process. We prepared porous carbon doped with zinc oxide nanoparticles (ZNC-MOF-5) by high-temperature carbonization of MOF-5, and coated ZNC-MOF-5 on the surface of commercial membranes (ZNC-MOF-5@PP). Used to improve the cycling stability of metal lithium negative electrodes. Zinc oxide nanoparticles in ZNC-MOF-5 have good lithium affinity and can promote Li+ deposition. The porous structure with a high specific surface area endows the electrode with high lithium loading capacity, reduces local current density, and obtains a dendrite-free metal lithium negative electrode. The electrochemical cycling performance of Li/Cu batteries indicates that, ZNC-MOF-5@PP. The separator can prevent the growth of dendrites and improve cycling stability, proving that ZNC-MOF-5 can effectively guide the deposition of Li and solve dendrite problems.
Funder
Air Force Aviation University