Can we rely on COVID-19 data? An assessment of data from over 200 countries worldwide

Author:

Farhadi Noah1ORCID

Affiliation:

1. IU International University, IU International University of Applied Sciences, Berlin, Germany

Abstract

To fight COVID-19, global access to reliable data is vital. Given the rapid acceleration of new cases and the common sense of global urgency, COVID-19 is subject to thorough measurement on a country-by-country basis. The world is witnessing an increasing demand for reliable data and impactful information on the novel disease. Can we trust the data on the COVID-19 spread worldwide? This study aims to assess the reliability of COVID-19 global data as disclosed by local authorities in 202 countries. It is commonly accepted that the frequency distribution of leading digits of COVID-19 data shall comply with Benford’s law. In this context, the author collected and statistically assessed 106,274 records of daily infections, deaths, and tests around the world. The analysis of worldwide data suggests good agreement between theory and reported incidents. Approximately 69% of countries worldwide show some deviations from Benford’s law. The author found that records of daily infections, deaths, and tests from 28% of countries adhered well to the anticipated frequency of first digits. By contrast, six countries disclosed pandemic data that do not comply with the first-digit law. With over 82 million citizens, Germany publishes the most reliable records on the COVID-19 spread. In contrast, the Islamic Republic of Iran provides by far the most non-compliant data. The author concludes that inconsistencies with Benford’s law might be a strong indicator of artificially fabricated data on the spread of SARS-CoV-2 by local authorities. Partially consistent with prior research, the United States, Germany, France, Australia, Japan, and China reveal data that satisfies Benford’s law. Unification of reporting procedures and policies globally could improve the quality of data and thus the fight against the deadly virus.

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3