Nanocellulose-reinforced, multilayered poly(vinyl alcohol)-based hydrophobic composites as an alternative sealing film

Author:

Chou Chun-Tu1,Shi Shih-Chen1ORCID,Chen Tao-Hsing2,Chen Chih-Kuang3

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University (NCKU), Tainan, Taiwan

2. Department of Mechanical Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, Taiwan

3. Department of Materials and Optoelectronic Science, National Sun Yat-Sen University (NSYSU), Kaohsiung, Taiwan

Abstract

A flexible, hydrophobic, and multilayered poly(vinyl alcohol) (PVA) film evolved to replace a commercially available nonbiodegradable easy seal-paper (ES-PAPER) sealing film. First, environmentally friendly fillers, such as cellulose nanocrystals (CNCs) or cellulose nanofibers (CNFs), were added to produce PVA + CNC/CNF composites via blade coating and solution casting to strengthen the mechanical properties of PVA. Subsequently, biodegradable and hydrophobic materials, such as poly(ethylene glycol)–poly(lactic acid) (PEG–PLA) and neat PLA, were added to prepare multilayered PEG–PLA and PLA hydrophobic composites using double-sided solution casting. The hydrophobicity of PVA was enhanced through heat treatment. Finally, the mechanical properties of the as-prepared PVA film were compared with those of a commercially available ES-PAPER sealing film. PVA + CNC/CNF composites exhibit excellent transparency and mechanical properties, whereas PVA + CNCs 3.0 wt% have the highest Young's modulus and tensile strength, which are, respectively, 3% and 96% higher than the Young's modulus and tensile strength of an ES-PAPER sealing film. With regard to strain at break, the prepared PVA film also exhibited a value many times larger than that of the ES-PAPER sealing film because of good filler dispersibility, which significantly enhanced the durability of the sealing film.

Funder

National Science and Technology Council

Ministry of Science and Technology

Publisher

SAGE Publications

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3