Optimization design of curved outrigger structure based on buckling analysis and multi-island genetic algorithm

Author:

Liu Zhi-Hai1,Tian Shao-Lu2ORCID,Zeng Qing-Liang23,Gao Kui-Dong2,Cui Xin-Long1,Wang Cheng-Long2

Affiliation:

1. College of Transportation, Shandong University of Science and Technology, Qingdao, China

2. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China

3. College of Information Science and Engineering, Shandong Normal University, Jinan, China

Abstract

In the present work, the working state of the crane leg is analyzed and discussed, and its structure is optimized. SolidWorks software is used for modeling; ANSYS software is used for finite element analysis. First of all, the constrained finite element method (CFEM) is used to analyze the linear eigenvalue buckling and geometric nonlinear buckling of outriggers with different cross-section shapes. Prove that the curved leg has certain advantages in buckling. At the same time, analyzing the leg along a different path of buckling condition and stress changes provide the basis for the design of the subsequent reinforcement. After selecting the best cross-section shape of the outrigger, the agent-based multi-island genetic algorithm is used to optimize the structural parameters of the outrigger under the transverse stiffened plate reinforced structure and the longitudinally stiffened plate reinforced structure respectively. It is proved that the outrigger with the transverse stiffened plate has a significant effect in improving the bearing capacity and in the lightweight of the structure. Finally, the gap between the movable leg and the fixed leg was changed, the stress of different gaps was analyzed by using the finite element method, and the appropriate gap value was selected according to the high-order fitting curve.

Funder

ministry of education of the people’s republic of china

national natural science foundation of china

the Key R & D plan of Shandong Province, China

Publisher

SAGE Publications

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3