Microvascular Alterations After Temporary Coronary Artery Occlusion: The No-Reflow Phenomenon

Author:

Reffemann Thorsten1,Kloner Robert A.1

Affiliation:

1. The Heart Institute, Good Samaritan Hospital, University of Southern California, Los Angeles, California

Abstract

In experimental models of temporary coronary artery occlusion, tissue perfusion at the microvascular level remains incomplete even after patency of the infarct-related epicardial coronary artery is established, and distinct perfusion defects develop within the risk zone. This no-reflow phenomenon can be regarded as a basic cardiac response to ischemia-reperfusion. Perfusion defects observed in the clinical realm after reperfusion therapy for myocardial infarction may substantially be related to this mechanism in addition to microembolization and activation of platelets, as suggested in several recent studies. A major determinant of the amount of no-reflow seems to be infarct size itself. Reperfusion-related expansion of noreflow zones occurs within the first hours after the reopening of the coronary artery with a parallel reduction of regional myocardial flow, resulting in a potential therapeutic window. With various cardioprotective interventions, a close correlation between the size of the anatomic no-reflow and necrosis is a reproducible feature, which suggests a causal link between both entities of ischemic cardiac damage. Although vasodilating interventions failed to uncouple no-reflow zones from necrosis, the steps in the causal chain between microvascular and myocardial damage remain to be identified. On a long-term basis, tissue perfusion after ischemia-reperfusion remains markedly compromised for at least 4 weeks. Recent morphometric cardiac analyses suggested that the level of tissue perfusion after 4 weeks is a significant predictor of various indices of infarct healing, such as scar thickness, and infarct expansion index. As a consequence, improving tissue perfusion might concomitantly improve the healing process, which may provide the pathoanatomic basis for prognostic implications of no-reflow.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3