Cardiosphere-Derived Cells Attenuate Inflammation, Preserve Systolic Function, and Prevent Adverse Remodeling in Rat Hearts With Experimental Autoimmune Myocarditis

Author:

Nana-Leventaki E.1,Nana M.1,Poulianitis N.2,Sampaziotis D.2,Perrea D.3,Sanoudou D.45,Rontogianni D.2,Malliaras K.1ORCID

Affiliation:

1. Third Department of Cardiology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece

2. Department of Pathology, Evangelismos Hospital, Athens, Greece

3. Laboratory for Experimental Surgery and Surgical Research “N.S. Christeas”, National and Kapodistrian University of Athens School of Medicine, Athens, Greece

4. Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece

5. Fourth Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece

Abstract

Background: Cardiosphere-derived cells (CDCs) have yielded promising efficacy signals in early-phase clinical trials of ischemic and nonischemic cardiomyopathy. The potential efficacy of CDCs in acute myocarditis, an inflammatory cardiomyopathy without effective therapy, remains unexplored. Given that CDCs produce regenerative, cardioprotective, anti-inflammatory, and anti-fibrotic effects (all of which could be beneficial in acute myocarditis), we investigated the efficacy of intracoronary delivery of CDCs in a rat model of experimental autoimmune myocarditis. Methods: Lewis rats underwent induction of experimental autoimmune myocarditis by subcutaneous footpad injection of purified porcine cardiac myosin supplemented with Mycobacterium tuberculosis on days 1 and 7. On day 10, rats were randomly assigned to receive global intracoronary delivery of 500 000 CDCs or vehicle. Global intracoronary delivery was performed by injection of cells or vehicle into the left ventricular (LV) cavity during transient occlusion of the aortic root. Rats were euthanized 18 days after infusion. Cardiac volumes and systolic function were assessed by serial echocardiography, performed on days 1, 10, and 28. Myocardial inflammation, T-cell infiltration, and cardiac fibrosis were evaluated by histology. Results: Experimental autoimmune myocarditis was successfully induced in 14/14 rats that completed follow-up. Left ventricular ejection fraction (LVEF) and volumes were comparable on days 1 and 10 between groups. CDC infusion resulted in increased LVEF (81.5% ± 3% vs 65.4% ± 8%, P < .001) and decreased LV end-systolic volume (43 ± 15 vs 100 ± 24 μL, P < .001) compared to placebo administration at 18 days post-infusion. Cardiosphere-derived cell infusion decreased myocardial inflammation (7.4% ± 7% vs 20.7% ± 4% of myocardium, P = .007), cardiac fibrosis (16.6% ± 13% vs 38.1% ± 3% of myocardium, P = .008), and myocardial T-cell infiltration (30.4 ± 29 vs 125.8 ± 49 cells per field, P = .005) at 18 days post-infusion compared to placebo administration. Conclusion: Intracoronary delivery of CDCs attenuates myocardial inflammation, T-cell infiltration, and fibrosis while preventing myocarditis-induced systolic dysfunction and adverse remodeling in rats with experimental autoimmune myocarditis.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3