Affiliation:
1. Department of Cardiology, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
2. Department of Gastroenterology, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
Abstract
Myocardial ischemia–reperfusion (IR) injury is associated with high disability and mortality worldwide. This study was to explore the roles of dioscin in the myocardial IR rats and discover the related molecular mechanisms. Rats were divided into 5 groups: sham, IR, IR + 15 mg/kg dioscin, IR + 30 mg/kg dioscin, and IR + 60 mg/kg dioscin. Heart rate (HR), mean arterial blood pressure (MAP), and rate pressure product (RPP) were evaluated at 10 minutes before ischemia, immediately after ischemia, and at the beginning, middle, and end of reperfusion. Arrhythmia score and myocardial infarct size were examined in rats of all groups. The serum creatine kinase-muscle/brain (CKMB) and cardiac troponin I (cTnI) levels were analyzed via enzyme-linked immunosorbent assay. Protein amount of total connexin 43 (T-Cx43) and phosphorylated connexin 43 (P-Cx43) was evaluated by Western blot. Ischemia reperfusion significantly decreased HR, MAP, and RPP of rats compared to the sham group. However, dioscin significantly attenuated the above phenomena in a dose-dependent manner. Dioscin markedly inhibited IR-induced increase in arrhythmias score, infarct size, and serum CKMB and cTnI levels. In addition, dioscin strikingly induced IR-repressed expression of T-Cx43 and P-Cx43. Our results suggested that dioscin pretreatment exhibited protective effects against myocardial IR injury. Moreover, we found that dioscin attenuated myocardial IR-induced ventricular arrhythmias via upregulating Cx43 expression and activation.
Subject
Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献