Repurposing From Oncology to Cardiology: Low-Dose 5-Azacytidine Attenuates Pathological Cardiac Remodeling in Response to Pressure Overload Injury

Author:

Russell-Hallinan Adam12,Neary Roisin2,Watson Chris J.1,Baugh John A.2ORCID

Affiliation:

1. Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Northern Ireland, United Kingdom

2. UCD School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland

Abstract

Introduction: Recent evidence suggests that transcriptional reprogramming is involved in the pathogenesis of cardiac remodeling (cardiomyocyte hypertrophy and fibrosis) and the development of heart failure. 5-Azacytidine (5aza), an inhibitor of DNA methylation approved for hematological malignancies, has previously demonstrated beneficial effects on cardiac remodeling in hypertension. The aim of our work was to investigate whether pressure overload is associated with alterations in DNA methylation and if intervention with low-dose 5aza can attenuate the associated pathological changes. Methods and Results: C57Bl6/J mice underwent surgical constriction of the aortic arch for 8 weeks. Mice began treatment 4 weeks post-surgery with either vehicle or 5aza (5 mg/kg). Cardiac structure and function was examined in vivo using echocardiography followed by post mortem histological assessment of hypertrophy and fibrosis. Global DNA methylation was examined by immunostaining for 5-methylcytosine (5MeC) and assessment of DNA methyltransferase expression. The results highlighted that pressure overload-induced pathological cardiac remodeling is associated with increased DNA methylation (elevated cardiac 5MeC positivity and Dnmt1 expression). Administration of 5aza attenuated pathological remodeling and diastolic dysfunction. These beneficial changes were mirrored by a treatment-related reduction in global 5MeC levels and expression of Dnmt1 and Dnmt3B in the heart. Conclusion: DNA methylation plays an important role in the pathogenesis of pressure overload-induced cardiac remodeling. Therapeutic intervention with 5aza, at a dose 5 times lower than clinically given for oncology treatment, attenuated myocardial hypertrophy and fibrosis. Our work supports the rationale for its potential use in cardiac pathologies associated with aberrant cardiac wound healing.

Funder

Enterprise Ireland

Publisher

SAGE Publications

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3