Loss of Cardioprotection With Ischemic Preconditioning in Aging Hearts: Role of Sirtuin 1?

Author:

Adam Tasneem1,Sharp Stephanie1,Opie Lionel H.1,Lecour Sandrine1

Affiliation:

1. Department of Medicine, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa

Abstract

The effectiveness of ischemic preconditioning (IPC) to protect the heart against ischemia/reperfusion injury (IRI) declines with age. The deacetylase protein sirtuin 1 ( Sirt 1) confers myriad functions including longevity and cardioprotection against IRI. As such, Sirt 1 may be a potential candidate to explain the protective effect of IPC. We aim to explore the role of Sirt 1 in the loss of the cardioprotective effect of IPC with age. Isolated hearts from young (9 weeks) and older (12-18 months) Long-Evans rats were subjected to 30 minutes of global ischemia and 60 minutes of reperfusion. Preconditioning stimuli were applied with either 2 cycles of 5-minute ischemia/reperfusion or with the potent Sirt 1 agonist resveratrol (RSV, 10 µmol/L) for 15 minutes followed by a 10-minute washout before the sustained ischemia. Both IPC and RSV significantly enhanced the functional recovery of young hearts by 168% ( P < .001 vs control) and 65% ( P < .01 vs control), respectively, and concomitantly reduced the infarct size by 65% and 45%, but the effect was blunted in older hearts. Administration of the selective Sirt 1 inhibitor III to young hearts did not alter the protective effect of IPC. Following ischemia/reperfusion, higher Sirt 1 deacetylase activity was detected in older hearts compared to young hearts (0.48 ± 0.13 arbitrary units [AU] vs 0.17 ± 0.03 AU, P < .01) and IPC did not alter Sirt 1 deacetylase activity. In conclusion, although Sirt 1 deacetylase activity is increased with age during ischemia/reperfusion, our data suggest that the loss of the cardioprotective effect of IPC in older animals is likely to be independent of Sirt 1.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3