β3-Adrenoceptor Impairs Mitochondrial Biogenesis and Energy Metabolism During Rapid Atrial Pacing-Induced Atrial Fibrillation

Author:

Dong Jingmei1,Zhao Jingjing1,Zhang Miaomiao1,Liu Guangzhong1,Wang Xiaobing1,Liu Yixi1,Yang Ning2,Liu Yongwu3,Zhao Guanqi1,Sun Jiayu1,Tian Jingpu1,Cheng Cheping4,Wei Lin5,Li Yue1,Li Weimin1

Affiliation:

1. Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China

2. Ultrasonic Cardiogram Room, First Affiliated Hospital of Harbin Medical University, Harbin, China

3. Centre for Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin, China

4. Department of Cardiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA

5. Department of Cardiology, First Hospital of Harbin City, Harbin, China

Abstract

Background: The β3-adrenoceptor (β3-AR) is implicated in cardiac remodeling. Since metabolic dysfunction due to loss of mitochondria plays an important role in heart diseases, we examined the effects of β3-AR on mitochondrial biogenesis and energy metabolism in atrial fibrillation (AF). Methods: Atrial fibrillation was created by rapid atrial pacing in adult rabbits. Rabbits were randomly divided into 4 groups: control, pacing (P7), β3-AR antagonist (L748337), and β3-AR agonist (BRL37344) groups. Atrial effective refractory period (AERP) and AF induction rate were measured. Atrial concentrations of adenine nucleotides and phosphocreatine were quantified through high-performance liquid chromatography. Mitochondrial DNA content was determined. Real-time polymerase chain reaction and Western blot were used to examine the expression levels of signaling intermediates related to mitochondrial biogenesis. Results: After pacing for 7 days, β3-AR was significantly upregulated, AERP was reduced, and the AF induction rate was increased. The total adenine nucleotides pool was significantly reduced due to the decrease in adenosine triphosphate (ATP). The P7 group showed decreased activity of F0F1-ATPase. Mitochondrial DNA content was decreased and mitochondrial respiratory chain subunits were downregulated after pacing. Furthermore, expression of transcription factors involved in mitochondrial biogenesis, including peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF-1), and mitochondrial transcription factor A (Tfam), was lower in the P7 group in response to β3-AR activation. Further stimulation of β3-AR with BRL37344 exacerbated these effects, together with a significant decrease in the levels of phosphocreatine. In contrast, inhibition of β3-AR with L748337 partially restored mitochondrial biogenesis and energy metabolism of atria in the paced rabbits. Conclusion: The activation of β3-AR contributes to atrial metabolic remodeling via transcriptional downregulation of PGC-1α/NRF-1/Tfam pathway that are involved in mitochondrial biogenesis, which ultimately perturbs mitochondrial function in rapid pacing-induced AF. The β3-AR is therefore a potential novel therapeutic target for the treatment or prevention of AF.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3