Arterial Elastance and Wave Reflection Augmentation of Systolic Blood Pressure: Deleterious Effects and Implications for Therapy

Author:

Nichols Wilmer W.,Edwards David G.1

Affiliation:

1. the Department of Medicine, University of Florida College of Medicine, Gainesville, FL

Abstract

Systolic and pulse blood pressures are stronger predictors of stroke, coronary heart disease, myocardial infarction, heart failure, end-stage renal disease, and cardiovascular mortality than diastolic pressure. Furthermore, diastolic pressure is inversely related to coronary heart disease and cardiovascular mortality. Increased elastance (or stiffness, inverse of compliance) of the central elastic arteries is the primary cause of increased systolic and pulse pressure with advancing age and in patients with cardiovascular disease, including hypertension, and is due to degeneration and hyperplasia of the arterial wall; diastolic pressure decreases as arterial elastance increases. As elastance increases, transmission velocity of both forward and backward (or reflected) traveling waves increases, which causes the reflected wave to arrive earlier in the central aorta and augments pressure in late systole. These changes in arterial wall properties cause an increase in left ventricular afterload and myocardial oxygen consumption and a decrease in myocardial perfusion pressure, which may induce an imbalance in the supply-demand ratio, especially in hypertrophied hearts with coronary artery disease. Also, an increase in systolic pressure increases arterial wall circumferential stress, which promotes fatigue and development of athersclerosis. Vasodilator drugs have little direct active effect on large elastic arteries but can markedly reduce wave reflection amplitude and augmentation index by decreasing elastance of the muscular arteries and reducing pulse wave velocity of the reflected wave from the periphery to the heart. This decrease in intensity (or amplitude) and increase in travel time (or delay) of the reflected wave causes a generalized decrease in systolic pressure and arterial wall stress and an increase in ascending aortic flow during the deceleration phase. The decrease in systolic pressure brought about by this mechanism is grossly underestimated when systolic pressure is measured in the brachial artery.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3