Lacking Effects of Envelope Transcranial Alternating Current Stimulation Indicate the Need to Revise Envelope Transcranial Alternating Current Stimulation Methods

Author:

Erkens Jules1ORCID,Schulte Michael2,Vormann Matthias2,Herrmann Christoph S13

Affiliation:

1. Experimental Psychology Lab, Department of Psychology, Cluster of Excellence ‘Hearing4All’, European Medical School, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany

2. Hörzentrum Oldenburg GmbH, Oldenburg, Germany

3. Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany

Abstract

In recent years, several studies have reported beneficial effects of transcranial alternating current stimulation (tACS) in experiments regarding sound and speech perception. A new development in this field is envelope-tACS: The goal of this method is to improve cortical entrainment to the speech signal by stimulating with a waveform based on the speech envelope. One challenge of this stimulation method is timing; the electrical stimulation needs to be phase-aligned with the naturally occurring cortical entrainment to the auditory stimuli. Due to individual differences in anatomy and processing speed, the optimal time-lag between presentation of sound and applying envelope-tACS varies between participants. To better investigate the effects of envelope-tACS, we performed a speech comprehension task with a larger amount of time-lags than previous experiments, as well as an equal amount of sham conditions. No significant difference between optimal stimulation time-lag condition and best sham condition was found. Further investigation of the data revealed a significant difference between the positive and negative half-cycles of the stimulation conditions but not for sham. However, we also found a significant learning effect over the course of the experiment which was of comparable size to the effects of envelope-tACS found in previous auditory tACS studies. In this article, we discuss possible explanations for why our findings did not match up with those of previous studies and the issues that come with researching and developing envelope-tACS.

Funder

Bundesministerium für Bildung und Forschung

Publisher

SAGE Publications

Subject

General Neuroscience

Reference93 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3