Epidermal growth factor effect on lipopolysaccharide-induced inflammation in fibroblasts derived from diabetic foot ulcer

Author:

Mendoza-Marí Yssel1ORCID,García-Ojalvo Ariana1,Fernández-Mayola Maday1,Rodríguez-Rodríguez Nadia1,Martinez-Jimenez Indira1,Berlanga-Acosta Jorge1

Affiliation:

1. Wound Healing and Cytoprotection Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba

Abstract

Background Diabetic foot ulcers (DFU) are characterised by high levels of inflammatory mediators, resulting from sustained hyperglycaemic insult and the local microbial biofilm. The intralesional administration of epidermal growth factor (EGF) has emerged as an effective treatment that stimulates granulation and closure of DFU, reducing the risk of amputation. Within the wound, fibroblasts play key roles during the healing process, promoting granulation and contraction. The aim of the present study was to examine the anti-inflammatory effect of EGF in DFU-derived fibroblasts, challenged with lipopolysaccharide (LPS), under hyperglycaemic conditions, recreating in vitro what happens in a clinical scenario. Methods Healthy skin (HS) and DFU granulation tissue biopsies were used to isolate primary fibroblasts. The effect of LPS on cell proliferation was analysed. Transcriptional expression of toll-like receptor (TLR) pathway mediators (TLR4, TLR2, CD14, MYD88 and NFKB) and pro-inflammatory cytokines (TNF, IL-6 and IL-1B) were measured by semi-quantitative polymerase chain reaction (qPCR), in cells treated with appropriate concentrations of LPS, EGF and their combination. IL-6 protein concentration was quantified by ELISA. Results LPS stimulated proliferation of HS-derived fibroblasts, while inhibiting the proliferation of cells derived from DFU at the highest assayed concentration of 1 µg/mL. Regarding the TLR signalling pathway, LPS increased messenger RNA levels of mediators and pro-inflammatory genes, while EGF, alone or in the presence of LPS, downregulated them, except for IL-1B. Conclusion The results suggest that EGF might elicit an anti-inflammatory response in LPS-challenged fibroblasts, even in a hyperglycaemic milieu. Collectively, our findings contribute to explain newly observed effects of EGF in the clinical arena. Lay Summary In this research article, we analyse the putative anti-inflammatory effect of epidermal growth factor (EGF) on fibroblast isolated from diabetic foot ulcer (DFU) granulation tissue. To induce the inflammatory response, the cells were treated with lipopolysaccharide (LPS), simulating the gram-negative bacterial infection that takes place in the wounds of diabetic patients. We studied the expression of genes involved in bacterial recognition receptors signalling pathway and those that code for different pro-inflammatory cytokines. We obtained primary fibroblasts from biopsies of a neuropathic diabetic ulcer and from healthy skin, the former was used as the control. Cells were isolated and grown in high glucose Dulbecco’s Modified Eagle Medium (DMEM) culture medium, to simulate the hyperglycaemic insult. The effect of increasing concentrations of LPS on cell proliferation was analysed. Relative transcriptional expression of genes in the study was quantified by quantitative polymerase chain reaction (qPCR) in cells treated with LPS, EGF or a combination. Untreated cells served to normalise the expression. In the present study, we demonstrated that EGF modulated the primary immune response by reducing the activation of pathogen-recognition receptors and common genes involved in these signalling pathways, even in hyperglycaemic conditions. This effect translated in a decreased expression of pro-inflammatory cytokines. These results contribute to explain our previous observations about the reduction of circulating levels of inflammatory cytokines after local administration of human recombinant EGF in DFU. Further molecular studies should be carried out to fully understand the biological mechanisms elicited by EGF in this clinical scenario.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3