Computed Tomography–Based Humeral Templating for Uncemented Elbow Arthroplasty

Author:

Kohls Morgan R.1ORCID,Robertson Emerald D.1,Beckwitt Colin H.1,Ghodadra Anish A.2,Kaufmann Robert A.1ORCID

Affiliation:

1. Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, PA, USA

2. Department of Radiology, University of Pittsburgh Medical Center, PA, USA

Abstract

Background: Intramedullary (IM) screw insertion into the distal humerus provides fixation for a novel, uncemented elbow arthroplasty. A multitude of screw sizes is required to accommodate variable humeral morphology. The goal of this study was to use computed tomography (CT) for IM screw sizing and to validate this templating by inserting screws into three-dimensionally (3D) printed models. Methods: Computed tomography humerus scans for 30 patients were reformatted in the plane of the distal IM canal. Screw size was templated by measuring the canal diameter at 3 locations corresponding to the lengths of the screws being tested. Interrater and intrarater reliabilities of the measurements were assessed. Three-dimensional models of 5 humeri were printed, and IM screws were placed to achieve a secure endosteal fit. Results: We identified combinations of body components and IM screw length and diameter for all patients to seat this uncemented elbow arthroplasty. The measurements and screw width determinations were reliable. Canal diameter correlated with age but was unrelated to sex. Screws were inserted into five 3D-printed models which matched the templates and demonstrated mechanical and radiographic evidence of secure fit. Conclusions: This study characterizes distal humerus anatomy in the context of IM screw fixation. Humerus CT scans of 30 patients were able to be templated, and validation via implantation of IM screws into 3D models was successful. Computed tomography templating will allow surgeons to predict the optimal screw size prior to implantation. A broad range of screw lengths and diameters is critical for implantation of this novel elbow arthroplasty.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Surgery

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3