Computed Tomography Neurography for Visualization of the In Vivo Nervous System: A Proof of Concept

Author:

McCarthy James E.1ORCID,Serkova Natalie J.1

Affiliation:

1. University of Colorado Health, Aurora, USA

Abstract

Background: The human peripheral nervous system embodies anatomical, physiologic, and diagnostic perplexities that remain unexplained. Yet in the course of human history, there are no mechanisms, such as computed tomography (CT) or radiography, by which to image the peripheral nervous system in vivo using a contrast agent that is identified by ionizing radiation, which would aid in surgical navigation, diagnostic radiology, and basic science thereof. Methods: A novel class of contrast was created by linking iodine to lidocaine. The radiodensity of 0.5% experimental contrast molecule was compared with a control of 1% lidocaine by placing 1.5-mL aliquots of each liquid into centrifuge tubes and performing micro–computed tomography (micro-CT) synchronously under identical settings. Physiologic binding to the sciatic nerve was evaluated by injecting 10 mg of the experimental contrast and 10 mg of the control into the contralateral sciatic nerve, and documenting loss of hindlimb function and recovery. In vivo visualization of the sciatic nerve was evaluated by injecting 10 mg of experimental contrast or control into either sciatic nerve and imaging the hindlimbs under identical conditions using micro-CT. Results: The mean Hounsfield unit of the contrast was 56.09 compared with −0.48 for control (116-fold increase, P = .0001). Hindlimb paresis revealed similar degree of paresis, baseline recovery, and time to recovery. In vivo enhancement between the contralateral sciatic nerves was similar. Conclusion: Iodinated lidocaine offers a viable mechanism for in vivo peripheral nerve imaging using CT; however, it requires modification to improve in vivo radiodensity.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3