Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds

Author:

Shao H.12,Sun M.3,Zhang F.4,Liu A.5,He Y.12,Fu J.12,Yang X.6,Wang H.3,Gou Z.6

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China

2. Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China

3. Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China

4. Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China

5. Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China

6. Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, China

Abstract

Implanting artificial biomaterial implants into alveolar bone defects with individual shape and appropriate mechanical strength is still a challenge. In this study, bioceramic scaffolds, which can precisely match the mandibular defects in macro and micro, were manufactured by the 3-dimensional (3D) printing technique according to the computed tomography (CT) image. To evaluate the stimulatory effect of the material substrate on bone tissue regeneration in situ in a rabbit mandibular alveolar bone defect model, implants made with the newly developed, mechanically strong ~10% Mg-substituted wollastonite (Ca90%Mg10%SiO3; CSi-Mg10) were fabricated, implanted into the bone defects, and compared with implants made with the typical Ca-phosphate and Ca-silicate porous bioceramics, such as β-tricalcium phosphate (TCP), wollastonite (CaSiO3; CSi), and bredigite (Bred). The initial physicochemical tests indicated that although the CSi-Mg10 scaffolds had the largest pore dimension, they had the lowest porosity mainly due to the significant linear shrinkage of the scaffolds during sintering. Compared with the sparingly dissolvable TCP scaffolds (~2% weight loss) and superfast dissolvable (in Tris buffer within 6 wk) pure CSi and Bred scaffolds (~12% and ~14% weight loss, respectively), the CSi-Mg10 exhibited a mild in vitro biodissolution and moderate weight loss of ~7%. In addition, the CSi-Mg10 scaffolds showed a considerable initial flexural strength (31 MPa) and maintained very high flexural resistance during soaking in Tris buffer. The in vivo results revealed that the CSi-Mg10 scaffolds have markedly higher osteogenic capability than those on the TCP, CSi, and Bred scaffolds after 16 wk. These results suggest a promising potential application of customized CSi-Mg10 3D robocast scaffolds in the clinic, especially for repair of alveolar bone defects.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3