Assessment by Nano-indentation of the Hardness and Elasticity of the Resin-Dentin Bonding Area

Author:

Van Meerbeek B.1,Willems G.1,Celis J.P.2,Roos J.R.2,Braem M.3,Lambrechts P.1,Vanherle G.1

Affiliation:

1. Department of Operative Dentistry and Dental Materials, Katholieke Universiteit te Leuven, U.Z. St. Rafael, Kapucijnenvoer 7, B-3000 Leuven, Belgium

2. Department of Metallurgy and Materials Engineering (MTM), Katholieke Universiteit te Leuven, W. de Croylaan 2, B-3001 Leuven, Belgium

3. Dental Propedeutics, Universitair Centrum Antwerpen (UA-RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium

Abstract

The hardness and Young's modulus of the successive layers across a resin-dentin bonding area were determined by nano-indentation for four commercially-available dentin adhesive systems, of which two were also applied with a different conditioning agent. With a computer-controlled nano-indentation technique, minute triangular indentations were made within a small area of a few micrometers' diameter at a load of a few milli-Newtons. The load and displacement of the indenter were continuously monitored during the loading-unloading sequence, so hardness and Young's modulus could be computed as a function of the indenter geometry and the applied load. The hardness of the resin-dentin interdiffusion zone was significantly lower than that of unaltered dentin. A gradient of moduli of elasticity was observed from the rather stiff dentin over a more elastic resin-dentin interdiffusion zone and adhesive resin layer to the restorative composite. That gradient was more substantial in those systems that produced relatively thick adhesive resin layers or supplementally provided a filled low-viscosity resin as an intermediate layer between the adhesive resin and the bulk restorative composite. Such an elastic bonding area might have a strain capacity sufficient to relieve stresses between the shrinking composite restoration and the rigid dentin substrate, thereby improving the conservation of the dentin bond and, as a consequence, the marginal integrity and retention of the restoration.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3