Labile or Surface Pools of Magnesium, Sodium, and Potassium in Developing Porcine Enamel Mineral

Author:

Aoba T.1,Shimoda S.2,Moreno E.C.1

Affiliation:

1. Forsyth Dental Center, 140 The Fenway, Boston, Massachusetts 02115

2. Tsurumi University Faculty of Dentistry, Tsurumi, Yokohama 230, Japan

Abstract

The present study was undertaken to assess the labile or surface pools of Mg, Na, and K ions in porcine enamel tissues at various developmental stages. The enamel samples, corresponding to the outer and the inner secretory, the early maturing, and the mature hard enamel, were dissected from the labial sides of permanent incisors of 6- to 8-month-old piglets. Each enamel sample was extracted successively with solutions of de-ionized water and 50 mmol/L Tris-4 mol/L guanidine buffer (for removal of organic matrix proteins, mainly amelogenins). The labile (free or organically bound) pools of Mg, Na, and K were assessed by the total amounts of these ionic species extracted by the water and Tris-guanidine buffer. The surface (adsorbed onto enamel mineral) pool of Mg was assessed directly by determination of the adsorption of Mg onto enamel mineral at various developmental stages. The results showed that: (i) 30-40% of the Mg in the secretory and early maturation enamel was in the surface pool (adsorbed onto the enamel mineral); (ii) 25 to 40% of the total sodium in the enamel samples was in labile forms; and (iii) most (around 70-80%) of the total potassium was readily extracted in water and appeared to originate from the enamel fluid; only marginal portions remained in the solids. The present adsorption studies also indicated that the maximum uptake of magnesium in the early maturation enamel was due mostly to an increase of the occupancy by Mg ions of adsorption sites on the crystal surfaces, which become accessible with a massive removal of enamel matrix proteins. The observation that the surface pool of Mg (and the total Mg content) decreased markedly with the advancement of mineralization is explained by the displacement of the adsorbed Mg from the crystal surfaces by Ca2+ having a higher adsorption affinity for the same adsorption sites and by changes in the properties of the mineral surfaces. The overall results support the contention that incorporation of Mg into developing enamel upon resorption of the organic matrix may play a key role in regulating enamel crystal growth.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3