Mineral Distribution and Dimensional Changes in Human Dentin during Demineralization

Author:

Kinney J.H.1,Balooch M.1,Haupt D.L.1,Marshall S.J.2,Marshall G.W.2

Affiliation:

1. L-356, PO Box 808, Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, California 94551

2. University of California, San Francisco

Abstract

Many bonding agents require the dentin surface to be acid-etched prior to being bonded. Understanding the stability and morphology of the etched dentin surface is important for improving bond strength and reliability in these systems. In this study, the atomic force microscope was used to quantify dimensional changes that occur to fully hydrated dentin during demineralization with a pH 4.0 lactic acid gel. A high-resolution microtomography instrument, the x-ray tomographic microscope, was also used to quantify the mineral density distribution in the dentin as a function of etching time. The intertubular dentin surface shrank by less than 0.5 μm during etching, while the peritubular dentin receded at an initially rapid linear rate. The dentin surface retained its initial morphology, although it was more porous with the removal of the peritubular dentin. Beneath the etched surface, there were three major zones characterized by mineral density differences. The first zone was a fully demineralized collagen layer, subjacent to which was a partially demineralized zone of roughly constant mineral density. Immediately following the partially mineralized layer was normal dentin. The presence of the partially mineralized layer could be explained in terms of different transport rates in the peritubular and intertubular dentin.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3