Nrf2 Activation Attenuates Both Orthodontic Tooth Movement and Relapse

Author:

Kanzaki H.12,Shinohara F.3,Itohiya-Kasuya K.2,Ishikawa M.2,Nakamura Y.2

Affiliation:

1. Tohoku University Hospital, Maxillo-oral Disorders, Sendai, Japan

2. Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan

3. Tohoku University Graduate School of Dentistry, Oral Microbiology, Sendai, Japan

Abstract

During orthodontic tooth movement, osteoclasts resorb the alveolar bone at the compress side of periodontium. Reactive oxygen species (ROS) works as intracellular signaling molecules of RANKL during osteoclastogenesis, although ROS has cytotoxicity against cells such as lipid oxidation. To deal with oxidative stress, cells have a defense system that is scavenging ROS by augmented antioxidative stress enzymes via transcriptional regulation with nuclear factor E2-related factor 2 (Nrf2). Previously, we reported that augmented antioxidative stress enzymes by Nrf2-gene transfer inhibited bone destruction. In the present study, we examined the effects of Nrf2 activation on osteoclastogenesis and, thereby, orthodontic tooth movement and orthodontic relapse. Mouse macrophage cell line RAW264.7 cells were used as osteoclast progenitor cells and stimulated with recombinant RANKL (100 ng/mL) with or without Nrf2 activator sulforaphane (SFN) and epigallocatechin gallate (EGCG) or ROS scavenger catechin. Osteoclastogenesis, resorption activity, and osteoclast marker gene expression were examined. Intracellular ROS was analyzed by flow cytometry. Maxillary first molars of C57BL6 male mice were moved palatally with 0.012-inch NiTi wire (100-mN force); SFN or EGCG was injected into the palatal gingiva once a week; and phosphate buffered saline was injected on the contralateral side. Tooth movement was monitored using a stone model with precise impression, and the amount of the tooth movement was compared among groups. SFN and EGCG significantly, but catechin weakly, inhibited RANKL-mediated osteoclastogenesis in vitro. Western blot analysis revealed that SFN and EGCG augmented the nuclear translocation of Nrf2 and the expression of anti-oxidative stress enzymes such as HO-1, although catechin did not. SFN and EGCG significantly, but catechin weakly, attenuated the intracellular ROS. Finally, animal experiment revealed that both SFN and EGCG successfully inhibited the orthodontic tooth movement. Additionally, SFN inhibited the relapse. These results suggest that Nrf2 activation could be therapeutic target for the anchorage enforcement in orthodontic treatment and pharmacologic retention against relapse.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3