Acid-etching and Hydration Influence on Dentin Roughness and Wettability

Author:

Rosales J.I.1,Marshall G.W.2,Marshall S.J.2,Watanabe L.G.2,Toledano M.1,Cabrerizo M.A.3,Osorio R.1

Affiliation:

1. Dental Materials Department, Granada University, 18071 Granada, Spain

2. Division of Biomaterials and Bioengineering, Department of Restorative Dentistry, University of California, 707 Parnassus Avenue, San Francisco, CA, USA 94143-0758

3. Applied Physics Department, University of Granada, 18071 Granada, Spain

Abstract

Adhesion of restorative and protective materials to dentin is an important requirement for operative and preventive dentistry. Wettability and roughness are dentin substrate conditions that are critical to establishing good adhesion. This study examined superficial and deep dentin for variations in water contact angle measurements and roughness for polished, etched, dehydrated, and rehydrated states. Superficial and deep dentin disks from 6 non-carious third molars were prepared for AFM (Atomic Force Microscope) observation, roughness measurement, and contact angle measurements following specific treatments: hydrated and polished, etched (10% H3P04), dehydrated (desiccator for 24 hrs); and rehydrated (in water for 24 hrs). Contact angles were measured by means of the ADSA (Axisymmetric Drop Shape Analysis) technique with filtered and purified water of surface tension 72.79 ergs/cm2. The AFM was used to quantify the intertubular roughness. Mean and SD of roughness and contact angle were calculated for each dentin state, and two-way Repeated Measures ANOVA with Tukey's HSD multiple comparisons were performed at p < 0.05. Wetting and roughness both increased after etching, with roughness tending to increase further while wettability dramatically decreased after desiccation. After rehydration, water contact angle values were equivalent to those of the etched condition. Although intertubular roughness did not depend on depth, lower water contact angles were found for deep dentin. Depth and dehydration resulted in altered dentin substrates with exposed hydrophobic moieties that could interfere with bonding to hydrophilic primer coats.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3