Affiliation:
1. Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Louwesweg 1, 1066 EA Amsterdam, The Netherlands
2. Department of Operative Dentistry, Dental School, Catholic University of Louvain, Brussels, Belgium
Abstract
Since light activation of resin-modified glass ionomers as a means of polymerizing the HEMA is usually done shortly after mixing occurs, the acid-base reaction will proceed mainly within a formed HEMA-polymer matrix. Delaying or omitting light activation may alter the structure and consequently its integrity. The aim of this study was to investigate the effect on the structural integrity of Fuji II LC, Photac-Fil, and Vitremer by delaying or omitting light initiation as compared with the integrity when light activation is performed 2 min after mixing occurs. We evaluated integrity by three-body wear experiments, conducted 8 hrs after sample preparation, to establish the integrity in the early phase of hardening, as well as after 1 wk and after 4 mos, to follow the materials throughout the process of maturation. When light activation was delayed for 1 hr, the structural integrity of Fuji II LC and Photac-Fil improved significantly in the early stages of hardening. In the case of Vitremer, an hour's delay of light activation significantly decreased integrity, which declined further when light activation was omitted. Fuji II LC was not affected by the omission of light activation, while Photac-Fil was markedly weakened. After 4 mos of aging, most of the samples of each product which had been cured by the different methods attained equal integrity, with the exception of the non-light-activated Vitremer samples, which remained weaker. We concluded that the structural integrity of resin-modified glass-ionomer cements benefits from a chemical integration of the polyalkenoate and poly-HEMA networks, as in Vitremer. Improvement in the structural integrity in the early phase for cements with a mechanical entanglement of the matrices, as in Fuji II LC and Photac-Fil, requires an acid-base reaction, a considerable portion of which may take place before activation of the HEMA polymerization.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献