SMDI: An Index for Measuring Subgingival Microbial Dysbiosis

Author:

Chen T.1,Marsh P.D.2ORCID,Al-Hebshi N.N.3ORCID

Affiliation:

1. Department of Microbiology, Forsyth Institute, Cambridge, MA, USA

2. Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK

3. Oral Microbiome Research Laboratory, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA

Abstract

An intuitive, clinically relevant index of microbial dysbiosis as a summary statistic of subgingival microbiome profiles is needed. Here, we describe a subgingival microbial dysbiosis index (SMDI) based on machine learning analysis of published periodontitis/health 16S microbiome data. The raw sequencing data, split into training and test sets, were quality filtered, taxonomically assigned to the species level, and centered log-ratio transformed. The training data set was subject to random forest analysis to identify discriminating species (DS) between periodontitis and health. DS lists, compiled by various “Gini” importance score cutoffs, were used to compute the SMDI for samples in the training and test data sets as the mean centered log-ratio abundance of periodontitis-associated species subtracted by that of health-associated ones. Diagnostic accuracy was assessed with receiver operating characteristic analysis. An SMDI based on 49 DS provided the highest accuracy with areas under the curve of 0.96 and 0.92 in the training and test data sets, respectively, and ranged from −6 (most normobiotic) to 5 (most dysbiotic) with a value around zero discriminating most of the periodontitis and healthy samples. The top periodontitis-associated DS were Treponema denticola, Mogibacterium timidum, Fretibacterium spp., and Tannerella forsythia, while Actinomyces naeslundii and Streptococcus sanguinis were the top health-associated DS. The index was highly reproducible by hypervariable region. Applying the index to additional test data sets in which nitrate had been used to modulate the microbiome demonstrated that nitrate has dysbiosis-lowering properties in vitro and in vivo. Finally, 3 genera ( Treponema, Fretibacterium, and Actinomyces) were identified that could be used for calculation of a simplified SMDI with comparable accuracy. In conclusion, we have developed a nonbiased, reproducible, and easy-to-interpret index that can be used to identify patients/sites at risk of periodontitis, to assess the microbial response to treatment, and, importantly, as a quantitative tool in microbiome modulation studies.

Funder

National Institute of Dental and Craniofacial Research

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3