Ionic Liquid–Stabilized Titania Quantum Dots Applied in Adhesive Resin

Author:

Garcia I.M.1,Souza V.S.2,Hellriegel C.3,Scholten J.D.2,Collares F.M.1ORCID

Affiliation:

1. Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

2. Laboratory of Molecular Catalysis, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

3. Carl Zeiss Microscopy Inc., Harvard Center for Biological Imaging, Cambridge, MA, USA

Abstract

Quantum dots (QDs; 1 to 10 nm) were recently synthesized by sol-gel and used as nonagglomerated nanoparticles in adhesive resin. The sol-gel process presented a low yield and resulted in a liquid product without stability. In this study, an imidazolium ionic liquid (IL; 1- n-butyl-3-methylimidazolium tetrafluoroborate, BMI.BF4) was used as stabilizing agent to synthesize titanium dioxide QDs (TiO2QDs/BMI.BF4) via a chemical route. The product was isolated as powder after washing, centrifuging, and drying. An experimental adhesive resin was formulated by mixing methacrylate monomers and a photoinitiator system. The TiO2QDs/BMI.BF4 powder was incorporated at 2.5 (G2.5%) and 5 (G5%) wt% in the adhesive resin, and one group remained without TiO2QDs/BMI.BF4 powder as the control (Gctrl). The TiO2QDs/BMI.BF4 powder was analyzed by micro-Raman spectroscopy, thermogravimetry, and transmission electron microscopy. The dispersion of TiO2QDs/BMI.BF4 powder was analyzed in the polymerized adhesive resin with transmission electron microscopy and fluorescence microscopy. The adhesive resins were evaluated for immediate and long-term antibacterial activity, cytotoxicity, polymerization behavior, degree of conversion, softening in solvent, immediate and long-term microtensile bond strength, and fracture pattern. The TiO2QDs/BMI.BF4 powder showed peaks of anatase and rutile and 26 wt% of BMI.BF4. TiO2QDs/BMI.BF4 presented a minimum size of 1.19 nm, a maximum size of 7.11 nm, and a mean ± SD size of 3.54 ± 1.08 nm. TiO2QDs/BMI.BF4 was dispersed in the adhesive resin without agglomeration, presenting intermittent luminescence by blinking. The addition of any tested concentration of TiO2QDs/BMI.BF4 powder provided immediate and long-term antibacterial activity without cytotoxic effect against the pulp fibroblasts. Furthermore, compared with Gctrl, G2.5% showed reliable polymerization behavior and degree of conversion without differences for softening in solvent with maintenance of bond adhesion to tooth immediately and over time. Thus, the incorporation of 2.5 wt% of TiO2QDs/BMI.BF4 in adhesive resin showed reliable physical, chemical, and biological properties.

Funder

Coordenação de aperfeiçoamento de pessoal de nívelvel superior

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3