Regulating Fibrocartilage Stem Cells via TNF-α/Nf-κB in TMJ Osteoarthritis

Author:

Bi R.1,Chen K.1,Wang Y.1,Luo X.1,Li Q.1,Li P.1,Yin Q.1,Fan Y.2,Zhu S.1

Affiliation:

1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China

2. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China

Abstract

In this study, we investigate harnessing fibrocartilage stem cell (FCSC) capacities by regulating tumor necrosis factor α (TNF-α) signaling for cartilage repair in temporomandibular joint osteoarthritis (TMJOA). Stem cell specifics for FCSCs were characterized in the presence of TNF-α. Etanercept as a TNF-α inhibitor and BAY 11-7082 as an Nf-κB inhibitor were used to study TNF-α regulation of FCSCs. Lineage tracing was performed in Gli1-CreERT+;Tmfl/fl mice when etanercept (1 mg/kg, every 3 d) or isometric vehicle was subcutaneously injected to trace specific changes in FCSCs. Surgically induced TMJOA Sprague-Dawley rats were generated with BAY 11-7082 (5 mg/kg, every 3 d) or vehicle subcutaneous injection to investigate the functional role of TNF-α/Nf-κB in TMJOA. Anterior disc displacement (ADD) rabbits were used to analyze the therapeutic effect of etanercept as a TMJOA intra-articular treatment with etanercept (0.02 mg in 100 μL, every 2 wk) or isometric vehicle. In vitro, TNF-α inhibited proliferation of FCSCs and increased FCSC apoptosis. TNF-α activation interfered with osteogenic and chondrogenic differentiation of FCSCs, while etanercept could partially recover FCSC specificity from TNF-α. FCSC lineage tracing in Gli1-CreERT+;Tmfl/fl mice showed that the chondrogenic capacity of Gli1+ cell lineage was markedly suppressed in osteoarthritis cartilage, the phenotype of which could be significantly rescued by etanercept. Specifically blocking the Nf-κB pathway could significantly weaken the regulatory effect of TNF-α on FCSC specificity in vitro and in TMJOA rats in vivo. Finally, intra-articular etanercept treatment efficiently rescued TMJ cartilage degeneration and growth retardation in ADD rabbits. Inhibition of TNF-α signaling reduced Nf-κB transcripts and recovered FCSC specificities. In vivo, etanercept treatment effectively rescued the osteoarthritis phenotype in TMJOA mice and ADD rabbits. These data suggest a novel therapeutic mechanism whereby TNF-α/Nf-κB inhibition promotes FCSC chondrogenic capacity for cartilage transformation in TMJOA.

Funder

Department of Science and Technology of Sichuan Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3