Chronic Phenotypes Underlying Radiation-Induced Salivary Gland Dysfunction

Author:

Gunning J.A.1,Limesand K.H.1ORCID

Affiliation:

1. Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA

Abstract

Head and neck cancer (HNC) is the sixth most diagnosed cancer, and treatment typically consists of surgical removal of the tumor followed by ionizing radiation (IR). While excellent at controlling tumor growth, IR often damages salivary glands due to their proximity to common tumor sites. Radiation damage to salivary glands results in loss of secretory function, causing severe and chronic reductions in salivary flow. This leads to the patient-reported sensation of dry mouth, termed xerostomia, which significantly reduces quality of life for HNC patients and survivors. The mechanisms underlying salivary gland damage remain elusive, and therefore, treatment options are scarce. Available therapies provide temporary symptom relief, but there is no standard of care for permanent restoration of function. There is a significant gap in understanding the chronic mechanistic responses to radiation as well as treatments that can be given in the months to years following cessation of treatment. HNC cases are steadily rising; particularly, the number of young patients diagnosed with nonfatal human papillomavirus + HNC continues to increase. The growing number of HNC diagnoses and improved prognoses results in more people living with xerostomia, which highlights the mounting need for restorative treatments. Mechanisms underlying chronic damage include decreases in acinar differentiation markers, increases in acinar cell proliferation, immune and inflammatory dysregulation, and metabolic changes including increases in amino acids and reductions in glycolysis and oxidative phosphorylation, fibrosis, and dysregulated neuronal responses. Currently, promising treatment options include adenoviral gene transfers and stem cell therapy. Thus, this review describes in depth known mechanisms contributing to chronic damage and discusses therapeutic advances in treating chronically damaged glands. Understanding the chronic response to radiation offers potential in development of new therapeutics to reverse salivary gland damage and improve the quality of life of HNC survivors.

Funder

National Institute of Dental and Craniofacial Research

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3