Irradiation Modes’ Impact on Radical Entrapment in Photoactive Resins

Author:

Leprince J.G.12,Lamblin G.132,Devaux J.32,Dewaele M.12,Mestdagh M.42,Palin W.M.5,Gallez B.6,Leloup G.12

Affiliation:

1. School of Dentistry and Stomatology

2. CRIBIO (Center for Research and Engineering on Biomaterials), Avenue Hippocrate, 10/5721, B-1200 Brussels, Belgium

3. Laboratory of Chemistry and Physics of High Polymers

4. Interfacial Chemistry Laboratory

5. Biomaterials Unit, University of Birmingham, College of Medical and Dental Sciences, School of Dentistry, St Chad’s Queensway, Birmingham, B4 6NN, UK

6. Louvain Drug Research Institute, Biomedical Magnetic Resonance Unit, Université catholique de Louvain, Brussels, Belgium

Abstract

Different irradiation protocols are proposed to polymerize dental resins, and discordances remain concerning their impact on the material. To improve this knowledge, we studied entrapment of free radicals in unfilled Bis-GMA/TEGDMA (50:50 wt%) resin after light cure. The tested hypothesis was that various irradiation parameters (curing time, irradiance, and radiant exposure) and different irradiation modes (continuous and pulse-delay) led to different amounts of trapped free radicals. The analysis of cured samples (n = 3) by electron paramagnetic resonance (EPR) revealed that the concentrations of trapped free radicals significantly differed according to the curing protocol. When continuous modes with similar radiant exposure were compared, higher concentrations of trapped free radicals were measured for longer times with lower irradiance. Concerning pulse modes, the delay had no influence on trapped radical concentration. These results give new insights into the understanding of the photopolymerization process and highlight the relevance of using EPR when studying polymerization of dimethacrylate-based materials.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3