Effect of Ion Exchange on the Microstructure, Strength, and Thermal Expansion Behavior of a Leucite-reinforced Porcelain

Author:

Denry I.L.1,Holloway J.A.1,Rosenstiel S.F.1

Affiliation:

1. The Ohio State University, College of Dentistry, Section of Restorative, Prosthodontics, and Endodontics, 305 W. 12th Avenue, Columbus, Ohio 43210-1241, USA

Abstract

Leucite (KAlSi2O6) is used as a reinforcing agent in some porcelains for all-ceramic restorations; however, it increases their coefficients of thermal expansion, imposing constraints on the processing of the material. The potassium ions in leucite are exchangeable for rubidium or cesium ions, leading to rubidium leucite or cesium leucite (pollucite). Both rubidium leucite and pollucite exhibit a lower coefficient of thermal expansion and inversion temperature than leucite. The purpose of this study was to evaluate the effects of rubidium and cesium leucites on thermal expansion, microstructure, crack deflection patterns, and flexural strength of a leucite-reinforced porcelain. A dental porcelain powder was mixed with rubidium or cesium nitrate and heat-treated. Porcelain bars (n = 3) and discs (n = 15) were made with the exchanged powders. X-ray diffraction analyses were performed before and after bars were fired. Controls were made of untreated Optec HSP porcelain powder, formed into bars and disks, and baked following manufacturer's recommendations. The density of all specimens was determined by Archimedes' method. The thermal expansion behavior of the materials was measured by dilatometry. The microstructure and Vickers indentation crack patterns were investigated by scanning electron microscopy. X-ray diffraction showed that after ionexchange and firing, leucite transformed into either tetragonal rubidium leucite or cubic cesium leucite. The mean coefficient of thermal contraction (550 to 50°C) was significantly (p < 0.003) greater for the control material, followed by the rubidium-exchanged material, and lowest for the cesium-exchanged material. Crack pattern analyses revealed that the cesium-exchanged material exhibited a significantly lower number of crack deflections compared with those in the two other materials (p < 0.001). The microstructure of the two exchanged porcelain materials was dense, with well-dispersed small crystals as well as larger rubidium or cesium leucite crystals. The mean flexural strength of the rubidium-exchanged material was significantly higher than those of the other materials, which were not significantly different. It was concluded that the thermal expansion of leucite-reinforced porcelain can be lowered by ionexchange, which also modifies the microstructure, crack deflection patterns, and flexural strength of the material.

Publisher

SAGE Publications

Subject

General Dentistry

Reference15 articles.

1. Azaroff LV, Buerger MJ (1958). The powder method in x-ray crystallography. New York: McGraw-Hill Book Company, Inc., pp. 233-245.

2. The crystal structure and chemical composition of pollucite

3. Crack deflection processes—I. Theory

4. Crack deflection processes—II. Experiment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3