Morphological Aspects of the Resin-Dentin Interdiffusion Zone with Different Dentin Adhesive Systems

Author:

Van Meerbeek B.1,Inokoshi S.2,Braem M.3,Lambrechts P.1,Vanherle G.1

Affiliation:

1. Department of Operative Dentistry and Dental Materials, Katholieke Universiteit te Leuven, U.Z. St. Rafael, Kapucijnenvoer 7, 3000 Leuven, Belgium

2. Department of Operative Dentistry, Tokyo Medical and Dental University, 5-45, Yushima, 1-Chome, Bunkyo-Ku, Tokyo, Japan

3. Dental Propedeutics, Universitair Centrum Antwerpen (RUCA), Groenenborgerlaan 171, 2020 Antwerpen, Belgium

Abstract

Cross-sections of resin-dentin interfaces were etched with an argon-ion beam to make their substructure detectable by scanning electron microscopy. The dentin adhesive systems were categorized morphologically into three groups, and an attempt was made to clarify their adhesive mechanism. The first group of products removed the smear layer. The argon-ion bombardment clearly disclosed a hybrid or resin-impregnated dentin layer. It is hypothesized that conditioning with acidic or chelating agents demineralized the dentin surface-layer to a certain depth, leaving behind a collagen-rich mesh-work. Hydrophilic monomers are then believed to alter this collagen-fiber arrangement in a way that facilitates penetration of the adhesive resin, resulting in a mechanical, intermingled link between collagen and the adhesive resin. The second group preserved the smear layer. In this case, the dentinal tubules were obliterated with globular particles at their orifices and remained patent underneath these smear plugs. This type of adhesive system aims at the incorporation of the smear layer into the hydrophilic monomers, which have an affinity for the organic and/or inorganic components of the underlying dentin. Finally, a third, small group only partly dissolved the smear layer, creating a thin resin-impregnated dentin layer and a resin-impregnated smear plug. This study clearly showed that the application of recent adhesive systems induced structural changes in the dentin surface morphology, creating a retentive interface, called the interdiffusion zone, between the deep, untouched dentin layers and the composite filling material. This resin-dentin interdiffusion zone offers bonding sites for copolymerization with the resin composite and, concurrently, might have protective potential for the pulp tissues.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3