Dental Research Data Availability and Quality According to the FAIR Principles

Author:

Uribe S.E.1234ORCID,Sofi-Mahmudi A.56ORCID,Raittio E.7ORCID,Maldupa I.2,Vilne B.1

Affiliation:

1. Bioinformatics Lab, Riga Stradins University, Riga, Latvia

2. Department of Conservative Dentistry and Oral Health, Riga Stradins University, Riga, Latvia

3. School of Dentistry, Universidad Austral de Chile, Valdivia, Chile

4. Baltic Biomaterials Centre of Excellence, Riga Technical University, Riga, Latvia

5. Seqiz Health Network, Kurdistan University of Medical Sciences, Seqiz, Kurdistan

6. Cochrane Iran Associate Centre, National Institute for Medical Research Development, Tehran, Iran

7. Institute of Dentistry, University of Eastern Finland, Kuopio, Finland

Abstract

According to the FAIR principles, data produced by scientific research should be findable, accessible, interoperable, and reusable—for instance, to be used in machine learning algorithms. However, to date, there is no estimate of the quantity or quality of dental research data evaluated via the FAIR principles. We aimed to determine the availability of open data in dental research and to assess compliance with the FAIR principles (or FAIRness) of shared dental research data. We downloaded all available articles published in PubMed-indexed dental journals from 2016 to 2021 as open access from Europe PubMed Central. In addition, we took a random sample of 500 dental articles that were not open access through Europe PubMed Central. We assessed data sharing in the articles and compliance of shared data to the FAIR principles programmatically. Results showed that of 7,509 investigated articles, 112 (1.5%) shared data. The average (SD) level of compliance with the FAIR metrics was 32.6% (31.9%). The average for each metric was as follows: findability, 3.4 (2.7) of 7; accessibility, 1.0 (1.0) of 3; interoperability, 1.1 (1.2) of 4; and reusability, 2.4 (2.6) of 10. No considerable changes in data sharing or quality of shared data occurred over the years. Our findings indicated that dental researchers rarely shared data, and when they did share, the FAIR quality was suboptimal. Machine learning algorithms could understand 1% of available dental research data. These undermine the reproducibility of dental research and hinder gaining the knowledge that can be gleaned from machine learning algorithms and applications.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3