Preparation of Hydroxyapatite Crystals and Their Behavior as Seeds for Crystal Growth

Author:

Aoba T.1,Moreno E.C.1

Affiliation:

1. Forsyth Dental Center, 140 Fenway, Boston, Massachusetts 02115

Abstract

Samples of crystalline hydroxyapatite [Ca5OH(PO4)3 HA] were prepared by precipitation from aqueous media under a variety of experimental conditions (temperature, concentration of reagents, rates of addition of the reagents, and seeding). The resultant products showed a wide range of particle sizes, i.e., specific surface areas, from 6.39 to 50.1 m2/g. In these preparations, relatively large crystals were obtained with low rates of addition of the reagents or by seeding the precipitating medium. Small differences in supersaturation of the reaction medium can markedly affect the particle sizes and crystalline habits of the resulting products, possibly by altering the processes of nucleation and subsequent crystal growth. When these crystalline materials were used as seeds to study the crystal growth of HA, it was confirmed that the precipitation rate of calcium apatite on seed crystals is highly dependent on the surface areas available for growth, rather than on the particle sizes and amounts of the seed crystals. Small differences in the kinetic runs were observed between the various seed crystals, which can be attributed to differences in the surface properties of these crystals. Additionally, transmission electron microscopy of the seed crystals revealed that some projections form, possibly on the basal planes of the crystals, during crystal growth. Since the growth rate of these projections was greater than the mean growth rate calculated on the basis of changes in solution composition and total surface area, it appears that the kinetics of the growth process is determined, to some extent, by the geometry of the seeds.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3