The Effect of Oxygen Inhibition on an Unfilled/Filled Composite System

Author:

Rueggeberg F.A.1,Margeson D.H.1

Affiliation:

1. Department of Dental Materials, School of Dentistry, Medical College of Georgia, Augusta, Georgia 30912

Abstract

Oxygen is known to inhibit vinyl polymerization in resins used for restorative dentistry. This research examined the effects of unfilled resin being blown into a thin layer on etched bovine enamel in atmospheres of room air, argon, or a combination of the two. Onto this thin, cured resin surface, filled resin was added and cured under atmospheric conditions similar to those of the initial polymerization of the unfilled resin. Comparison of the effects of the different testing atmospheres was made by measurement of the shear bond strength of the resin/composite disc to the etched bovine enamel. Monomer conversion values of the unfilled resin were calculated from the infrared spectra of the simulated tooth/disc assembly. Blowing unfilled resin with compressed room air prior to curing caused poor monomer conversion values and resulted in low shear bond strength to etched enamel. Both high monomer conversion and shear strength values resulted when specimens were cured under all-argon conditions. A clinically practical method of maintenance of the tooth under a continuous stream of argon while being cured in room air was shown to provide greater monomer conversion than curing under room-air conditions alone. SEM evaluation showed that the inhibited layer present in room-air curing was both physically displaced by and absorbed into the overlying filled composite. Specimens cured in argon showed an intact, uniformly thick layer of bonding resin next to the etched enamel, with no displacement by or absorption into the composite addition. Unfilled resin cured in room air had a significantly greater thickness of polymerization-inhibited material than did resin cured in an argon atmosphere.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3