Role of Mechanotransduction in Periodontal Homeostasis and Disease

Author:

Dieterle M.P.1,Husari A.23,Steinberg T.1,Wang X.1,Ramminger I.1,Tomakidi P.1

Affiliation:

1. Division of Oral Biotechnology, Center for Dental Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany

2. Department of Orthodontics, Center for Dental Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany

3. Faculty of Engineering, University of Freiburg, Freiburg, Germany

Abstract

Novel findings broaden the concept of mechanotransduction (MT) in biophysically stimulated tissues such as the periodontium by considering nuclear MT, convergence of intracellular MT pathways, and mechanoresponsive cotranscription factors such as Yes-associated protein 1 (YAP1). Regarding periodontal disease, recent studies have elucidated the role of bacterial gingipain proteases in disturbing the barrier function of cadherins, thereby promoting periodontal inflammation. This leads to dysregulation of extracellular matrix homeostasis via proteases and changes the cell’s biophysical environment, which leads to alterations in MT-induced cell behavior and loss of periodontal integrity. Newest experimental evidence from periodontal ligament cells suggests that the Hippo signaling protein YAP1, in addition to integrin-FAK (focal adhesion kinase) mechanosignaling, also regulates cell stemness. By addressing mechanosignaling-dependent transcription factors, YAP1 is involved in osteogenic and myofibroblast differentiation and influences core steps of autophagy. Recent in vivo evidence elucidates the decisive role of YAP1 in epithelial homeostasis and underlines its impact on oral pathologies, such as periodontitis-linked oral squamous cell carcinogenesis. Here, new insights reveal that YAP1 contributes to carcinogenesis via overexpression rather than mutation; promotes processes such as apoptosis resistance, epithelial-mesenchymal transition, or metastasis; and correlates with poor prognosis in oral squamous cell carcinoma. Furthermore, YAP1 has been shown to contribute to periodontitis-induced bone loss. Mechanistically, molecules identified to regulate YAP1-related periodontal homeostasis and disease include cellular key players such as MAPK (mitogen-activated protein kinase), JNK (c-Jun N-terminal kinase), Rho (Ras homologue) and ROCK (Rho kinase), Bcl-2 (B-cell lymphoma 2), AP-1 (activator protein 1), and c-myc (cellular myelocytomatosis). These findings qualify YAP1 as a master regulator of mechanobiology and cell behavior in human periodontal tissues. This review summarizes the most recent developments in MT-related periodontal research, thereby offering insights into outstanding research questions and potential applications of molecular or biophysical strategies aiming at periodontal disease mitigation or prevention.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3