Degradable RGD-Functionalized 3D-Printed Scaffold Promotes Osteogenesis

Author:

Chang P.-C.1234,Lin Z.-J.1,Luo H.-T.23,Tu C.-C.23,Tai W.-C.2,Chang C.-H.2,Chang Y.-C.2

Affiliation:

1. Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei

2. Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei

3. Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei

4. School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung

Abstract

To establish an ideal microenvironment for regenerating maxillofacial defects, recent research interests have concentrated on developing scaffolds with intricate configurations and manipulating the stiffness of extracellular matrix toward osteogenesis. Herein, we propose to infuse a degradable RGD-functionalized alginate matrix (RAM) with osteoid-like stiffness, as an artificial extracellular matrix, to a rigid 3D-printed hydroxyapatite scaffold for maxillofacial regeneration. The 3D-printed hydroxyapatite scaffold was produced by microextrusion technology and showed good dimensional stability with consistent microporous detail. RAM was crosslinked by calcium sulfate to manipulate the stiffness, and its degradation was accelerated by partial oxidation using sodium periodate. The results revealed that viability of bone marrow stem cells was significantly improved on the RAM and was promoted on the oxidized RAM. In addition, the migration and osteogenic differentiation of bone marrow stem cells were promoted on the RAM with osteoid-like stiffness, specifically on the oxidized RAM. The in vivo evidence revealed that nonoxidized RAM with osteoid-like stiffness upregulated osteogenic genes but prevented ingrowth of newly formed bone, leading to limited regeneration. Oxidized RAM with osteoid-like stiffness facilitated collagen synthesis, angiogenesis, and osteogenesis and induced robust bone formation, thereby significantly promoting maxillofacial regeneration. Overall, this study supported that in the stabilized microenvironment, oxidized RAM with osteoid-like stiffness offered requisite mechanical cues for osteogenesis and an appropriate degradation profile to facilitate bone formation. Combining the 3D-printed hydroxyapatite scaffold and oxidized RAM with osteoid-like stiffness may be an advantageous approach for maxillofacial regeneration.

Funder

Ministry of Science and Technology

National Health Research Institutes

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3