Mechanisms of Enamel Mineralization Guided by Amelogenin Nanoribbons

Author:

Habelitz S.1,Bai Y.1

Affiliation:

1. Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA

Abstract

The nanofibrous nature and its intricate structural organization are the basis for the extraordinary ability of sound enamel to outlive masticatory forces at minimal failure rates. Apatite nanofibers of several hundreds of micrometers to possibly millimeters in length originate during the secretory stage of amelogenesis as 2-nm-thin and 15-nm-wide ribbons that develop and grow in length under the guidance of a dynamic mixture of specialized proteins, the developing enamel matrix (DEM). A critical role in the unidirectional and oriented growth of enamel mineral ribbons has been attributed to amelogenin, the major constituent of the DEM. This review elaborates on recent studies on the ability of ribbon-like assemblies of amelogenin to template the formation of an amorphous calcium phosphate precursor that transforms into apatite mineral ribbons similar to the ones observed in developing enamel. A mechanistic model of the biological processes that drive biomineralization in enamel is presented in the context of a comparative analysis of enamel mouse models and earlier structural data of the DEM emphasizing a regulatory role of the matrix metalloproteinase 20 in mineral deposition and the involvement of a process-directing agent for the templated mineral growth directed by amelogenin nanoribbons.

Funder

National Institute of Dental and Craniofacial Research

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3