Adsorption of Zirconyl Salts and Their Acids on Hydroxyapatite: Use of the Salts as Coupling Agents to Dental Polymer Composites

Author:

Misra D.N.1

Affiliation:

1. American Dental Association Health Foundation, Paffenbarger Research Center, National Bureau of Standards, Gaithersburg, Maryland 20899

Abstract

Zirconyl methacrylate (I) and zirconyl-2-ethylhexanoate (II) were synthesized, and their adsorption isotherms from solutions onto synthetic hydroxyapatite were studied. The isotherms of methacrylic and 2-ethylhexanoic acids were also determined from the same solvents. The adsorption of I was irreversible from methylene chloride, and that of II was irreversible from cyclohexane. The adsorption in both cases was constant from solutions above a certain concentration, and exhaustive below this threshold concentration. Both compounds rendered the dried apatite powder extremely hydrophobic; however, the adsorbate was slowly washed off by excess water. The configuration of the adsorbate molecules, deduced from the maximum adsorption and other adsorption characteristics of the two compounds, indicated that: (i) in both cases the adsorbate may be held to the surface by concerted hydrogen bonding of the carboxylate and zirconyl oxygen atoms; and (ii) the hydrocarbon moieties in both adsorbates expose themselves toward the solution, thereby making the dried surface hydrophobic. The adsorptive behavior of the respective acids was similar to that of the salts. Polymer, filled with synthetic hydroxyapatite covered with irreversibly adsorbed I, had a diametral tensile strength about 50% greater than that of the polymer filled with untreated apatite. The strength of the composite was not affected by treatment of the apatite with II or with the acids.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3