A New Optical 3-D Device for the Detection of Wear

Author:

Mehl A.1,Gloger W.1,Kunzelmann K.-H.1,Hickel R.1

Affiliation:

1. Department of Operative Dentistry, Poliklinik fur Zahnerhaltung und Parodontologie, Ludwig-Maximilians-Universität München, Goethestr. 70,80336 Munich, Germany

Abstract

For the clinical performance of new dental restorative materials to be accurately assessed, the three-dimensional anatomical changes of the functional surfaces of the restoration must be elucidated over time. To this end, a highly accurate 3-D optical scanner has been developed that utilizes the principles of triangulation and a reference-free automated 3-D superimposition software. The aim of this study was to assess the accuracy and the precision of the new system with and without referenced positioning. Additionally, the ability of the system to determine wear of posterior fillings three-dimensionally has been shown. Gypsum replicas of restored teeth were evaluated. The tooth surfaces were scanned with a resolution of 250,000 surface points within a measuring time of 20 to 40 sec. The results show that the precision and accuracy of 3-D data acquisition depend on the surface inclination. Up to an angle of 60°, the precision is better than 3 μm, and the accuracy is better than 6 μm. If exact repositioning of the object before and after occlusal loading is possible, e.g., with in vitro studies, differences on the surface can be determined with a precision of 2.2 μm. In reference-free measurements, which are a necessity in clinical studies, the 3-D data acquisition in combination with the automatic matching program can detect wear with an accuracy of 10 um. The application of this measuring device for the detection of wear of a composite filling functioning in the mouth has been shown. Since this measuring technique is automated, and measurements of high accuracy can be attained in a short period of time, this system offers the possibility for complex analyses of three-dimensional wear to be conducted on a large number of samples in clinical studies.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3