Affiliation:
1. Department of Biomaterials and Biomimetics, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010, USA
Abstract
Failures of zirconia-based all-ceramic restorations appear to be predominantly chips and fractures in the porcelain veneer, from occlusally induced sliding contact damage. We hypothesized that such failure may be substantially mitigated by controlled grading of the elastic modulus at the ceramic surface. In this study, we fabricated graded structures by infiltrating glass into zirconia plates, resulting in improved aesthetics and diminished modulus at the surfaces. Individual plates were then embedded in epoxy or cemented to dental composites and subjected to single- or multi-cycle sliding contact. Plates of porcelain-veneered zirconia and monolithic zirconia served as controls. Graded zirconia-glass structures exhibited over 3 times better resistance to single-cycle sliding damage than monolithic zirconia and 25 times better than veneered zirconia, and had a fatigue sliding damage resistance comparable with that of monolithic zirconia. These zirconia-glass materials can be engineered in shades from white to yellow, and have potentially better cementation properties than homogeneous zirconia.
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献