Affiliation:
1. State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
2. State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Abstract
Enamel formation is a serial and complex biological process, during which related genes are expressed progressively in a spatiotemporal manner. This process is vulnerable to environmental cues, resulting in developmental defects of enamel (DDE). However, how environmental factors are biologically integrated during enamel formation is still poorly understood. Here, we investigated the mechanism of DDE elicited by a model endocrine-disrupting chemical, bisphenol A (BPA), in mouse incisors. We show that BPA exposure leads to DDE in mouse incisors, as well as excessive proliferation in dental epithelial stem/progenitor cells. Western blotting, chromatin immunoprecipitation sequencing, and immunofluorescence staining revealed that this effect was accompanied by upregulation of a repressive mark, H3K27me3, in the labial cervical loop of mouse incisors. Perturbation of H3K27me3 methyltransferase EZH2 repressed the level of H3K27me3 and partially attenuated the excessive proliferation in dental epithelial stem/progenitor cells and DDE induced by BPA exposure. Overall, our results demonstrate the essential role of repressive histone modification H3K27me3 in DDE elicited by exposure to an endocrine-disrupting chemical.
Funder
sichuan province science and technology support program
Clinical Research Project of West China Hospital of Stomatology
national natural science foundation of china
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献