Examining Bias and Reporting in Oral Health Prediction Modeling Studies

Author:

Du M.12ORCID,Haag D.12,Song Y.3,Lynch J.124,Mittinty M.12

Affiliation:

1. School of Public Health, The University of Adelaide, Adelaide, Australia

2. Robinson Research Institute, The University of Adelaide, Adelaide, Australia

3. Australian Research Centre for Population Oral Health, Adelaide Dental School, The University of Adelaide, Adelaide, Australia

4. Population Health Sciences, University of Bristol, Bristol, UK

Abstract

Recent efforts to improve the reliability and efficiency of scientific research have caught the attention of researchers conducting prediction modeling studies (PMSs). Use of prediction models in oral health has become more common over the past decades for predicting the risk of diseases and treatment outcomes. Risk of bias and insufficient reporting present challenges to the reproducibility and implementation of these models. A recent tool for bias assessment and a reporting guideline—PROBAST (Prediction Model Risk of Bias Assessment Tool) and TRIPOD (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis)—have been proposed to guide researchers in the development and reporting of PMSs, but their application has been limited. Following the standards proposed in these tools and a systematic review approach, a literature search was carried out in PubMed to identify oral health PMSs published in dental, epidemiologic, and biostatistical journals. Risk of bias and transparency of reporting were assessed with PROBAST and TRIPOD. Among 2,881 papers identified, 34 studies containing 58 models were included. The most investigated outcomes were periodontal diseases (42%) and oral cancers (30%). Seventy-five percent of the studies were susceptible to at least 4 of 20 sources of bias, including measurement error in predictors ( n = 12) and/or outcome ( n = 7), omitting samples with missing data ( n = 10), selecting variables based on univariate analyses ( n = 9), overfitting ( n = 13), and lack of model performance assessment ( n = 24). Based on TRIPOD, at least 5 of 31 items were inadequately reported in 95% of the studies. These items included sampling approaches ( n = 15), participant eligibility criteria ( n = 6), and model-building procedures ( n = 16). There was a general lack of transparent reporting and identification of bias across the studies. Application of the recommendations proposed in PROBAST and TRIPOD can benefit future research and improve the reproducibility and applicability of prediction models in oral health.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3