CPP-ACP Promotes SnF2 Efficacy in a Polymicrobial Caries Model

Author:

Dashper S.G.1,Shen P.1,Sim C.P.C.1,Liu S.W.1,Butler C.A.1,Mitchell H.L.1,D’Cruze T.1,Yuan Y.1,Hoffmann B.1,Walker G.D.1,Catmull D.V.1,Reynolds C.1,Reynolds E.C.1

Affiliation:

1. Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, University of Melbourne, Melbourne, Australia

Abstract

Dental caries is associated with plaque dysbiosis, leading to an increase in the proportions of acidogenic and aciduric bacteria at the expense of alkali-generating commensal species. Stannous fluoride (SnF2) slows the progression of caries by remineralization of early lesions but has also been suggested to inhibit glycolysis of aciduric bacteria. Casein phosphopeptide–amorphous calcium phosphate (CPP-ACP) promotes fluoride remineralization by acting as a salivary biomimetic that releases bioavailable calcium and phosphate ions, and the peptide complex has also been suggested to modify plaque composition. We developed a polymicrobial biofilm model of caries using 6 bacterial species representative of supragingival plaque that were cultured on sound human enamel and pulsed with sucrose 4 times a day to produce a high cariogenic challenge. We used this model to explore the mechanisms of action of SnF2 and CPP-ACP. Bacterial species in the biofilms were enumerated with 16S rRNA gene sequence analyses, and mineral loss and lesion formation were determined in the enamel directly under the polymicrobial biofilms via transverse microradiography. The model tested the twice-daily addition of SnF2, CPP-ACP, or both. SnF2 treatment reduced demineralization by 50% and had a slight effect on the composition of the polymicrobial biofilm. CPP-ACP treatment caused a similar inhibition of enamel demineralization (50%), a decrease in Actinomyces naeslundii and Lactobacillus casei abundance, and an increase in Streptococcus sanguinis and Fusobacterium nucleatum abundance in the polymicrobial biofilm. A combination of SnF2 and CPP-ACP resulted in a greater suppression of the acidogenic and aciduric bacteria and a significant 72% inhibition of enamel demineralization.

Funder

Australian Government Department of Industry, Innovation and Science

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3