Residual Monomer/Additive Release and Variability in Cytotoxicity of Light-curing Glass-ionomer Cements and Compomers

Author:

Geurtsen W.1,Spahl W.2,Leyhausen G.1

Affiliation:

1. Department of Conservative Dentistry & Periodontology, Medical University Hannover, D-30623 Hannover, Germany

2. Department of Organic Chemistry, University of Munich, Germany

Abstract

In previous studies, light-cured glass-ionomer cements have been shown to evoke cytotoxic reactions. It was the purpose of this investigation (a) to determine the nature of the ingredients released into an aqueous medium from 2 light-cured glass-ionomer cements (GICs) and 3 compomers ; (b) to evaluate the cytotoxicity of these extracts; and (c) to correlate the extent of the cytotoxic effects with eluted substances. Specimens of 2 light-cured GICs and 3 compomers were prepared and extracted in distilled water or cell culture medium for 24 hrs (surface-liquid ratio 42.4 mm2/mL). The aqueous eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). The relative amounts of the components released from various products were compared by means of an internal caffeine standard [%CF]. For evaluation of cytotoxic effects, permanent 3T3 fibroblasts were incubated with medium extracts for 24 hrs. In addition, the ED50 concentration of the photoinitiator diphenyliodoniumchloride (DPICI) was determined. In all extracts, several water-elutable organic substances were found: (Co)monomers (especially HEMA and ethylene glycol compounds), additives (e.g., camphorquinone and diphenyliodoniumchloride), and decomposition products. The extracts of 3 products inhibited cell growth only moderately, whereas the light-cured GIC Vitrebond and the compomer Dyract Cem revealed severe cytotoxic effects. Vitrebond liberated the initiator DPICI, whereas Dyract Cem segregated a relatively high quantity [2966 %CF] of the comonomer TEGDMA in comparison with the other products. The present data show that TEGDMA and DPICI may be regarded as the prime causes for cytotoxic reactions evoked by the investigated light-cured glass-ionomer cements or compomers. Therefore, leaching of these substances should be minimized or prevented.

Publisher

SAGE Publications

Subject

General Dentistry

Reference41 articles.

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3