Ceramic Bonding Interface under Shear–Compression Stress: Ultra-High-Speed Imaging Contribution

Author:

Lambert H.12ORCID,Corn S.3,Léger R.3,Ienny P.3,Slangen P.4,Fages M.12

Affiliation:

1. Laboratory Bioengineering and Nanosciences, University of Montpellier, Montpellier, France

2. Department of Prosthetic Dentistry, Faculty of Odontology, Montpellier University, France

3. LMGC, Univ Montpellier, IMT Mines Ales, CNRS, Ales, France

4. EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France

Abstract

The aim of this study is to visualize and characterize by ultra-high-speed imaging (UHSI) the failure phenomena at the resin–ceramic bonding interface of lithium disilicate (LiSi2) samples bonded with gold-standard protocol (Monobond Plus [MB]) and the nontoxic one (Monobond Etch & Prime [MEP]) subjected to mechanical loading. Unprecedented frame rate, image resolution, and recording time were reached by using the most advanced UHSI camera. The finite element analysis (FEA) of the proposed mechanical test confirmed that the specific design of our samples enables a combined shear and compression stress state, prone to test the bonding interface while being close to physiological stresses. Ten LiSi2 samples were pretreated by gold standard (MB, n = 5) and self-etching primer (MEP, n = 5). Axial compression loading gradually increased until catastrophic failure was performed. As shown by the FEA, the angle between the bonding interface and load direction leads to shear–compression stresses at the resin–ceramic bonding interface. Failure was recorded by UHSI at 300,000 fps. All recorded images were analyzed to segregate events and isolate the origin of fracture. For the first time, thanks to the image recording setup, it was observed that debonding is the first event before breakage, highlighting that sample fracture occurs by interfacial rupture followed by slippage and cohesive failure of materials. Failure mode could be described as mixed. MEP and MB showed similar results and behavior.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3