Oral Microbiota Composition Predicts Early Childhood Caries Onset

Author:

Grier A.1,Myers J.A.1,O’Connor T.G.234,Quivey R.G.56,Gill S.R.15,Kopycka-Kedzierawski D.T.67ORCID

Affiliation:

1. Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA

2. Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA

3. Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA

4. Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA

5. Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA

6. Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA

7. Department of Dentistry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA

Abstract

As the most common chronic disease in preschool children in the United States, early childhood caries (ECC) has a profound impact on a child’s quality of life, represents a tremendous human and economic burden to society, and disproportionately affects those living in poverty. Caries risk assessment (CRA) is a critical component of ECC management, yet the accuracy, consistency, reproducibility, and longitudinal validation of the available risk assessment techniques are lacking. Molecular and microbial biomarkers represent a potential source for accurate and reliable dental caries risk and onset. Next-generation nucleotide-sequencing technology has made it feasible to profile the composition of the oral microbiota. In the present study, 16S ribosomal RNA (rRNA) gene sequencing was applied to saliva samples that were collected at 6-mo intervals for 24 mo from a subset of 56 initially caries-free children from an ongoing cohort of 189 children, aged 1 to 3 y, over the 2-y study period; 36 children developed ECC and 20 remained caries free. Analyses from machine learning models of microbiota composition, across the study period, distinguished between affected and nonaffected groups at the time of their initial study visits with an area under the receiver operating characteristic curve (AUC) of 0.71 and discriminated ECC-converted from healthy controls at the visit immediately preceding ECC diagnosis with an AUC of 0.89, as assessed by nested cross-validation. Rothia mucilaginosa, Streptococcus sp., and Veillonella parvula were selected as important discriminatory features in all models and represent biomarkers of risk for ECC onset. These findings indicate that oral microbiota as profiled by high-throughput 16S rRNA gene sequencing is predictive of ECC onset.

Funder

National Institutes of Health

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3