Tongue-Coating Microbial and Metabolic Characteristics in Halitosis

Author:

Zhang Y.12345ORCID,Lo K.L.12345,Liman A.N.12345,Feng X.P.12345,Ye W.12345

Affiliation:

1. Department of Preventive Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

2. College of Stomatology, Shanghai Jiao Tong University, Shanghai, China

3. National Center for Stomatology, Shanghai, China

4. National Clinical Research Center for Oral Diseases, Shanghai, China

5. Shanghai Key Laboratory of Stomatology, Shanghai, China

Abstract

Halitosis is a common oral condition, which leads to social embarrassment and affects quality of life. Cumulative evidence has suggested the association of tongue-coating microbiome with the development of intraoral halitosis. The dynamic variations of tongue-coating microbiota and metabolites in halitosis have not been fully elucidated. Therefore, the present study aimed to determine the tongue-coating microbial and metabolic characteristics in halitosis subjects without other oral diseases using metagenomics and metabolomics analysis. The participants underwent oral examination, halitosis assessment, and tongue-coating sample collection for the microbiome and metabolome analysis. It was found that the microbiota richness and diversity were significantly elevated in the halitosis group. Furthermore, species from Actinomyces, Prevotella, Veillonella, and Solobacterium were significantly more abundant in the halitosis group. However, the Rothia and Streptococcus species exhibited opposite tendencies. Eleven Kyoto Encyclopedia of Genes and Genomes pathways were significantly enriched in the halitosis tongue coatings, including cysteine and methionine metabolism. Functional genes related to sulfur, indole, skatole, and cadaverine metabolic processes (such as serA, metH, metK and dsrAB) were identified to be more abundant in the halitosis samples. The metabolome analysis revealed that indole-3-acetic, ornithine, and L-tryptophan were significantly elevated in the halitosis samples. Furthermore, it was observed that the values of volatile sulfur compounds and indole-3-acetic abundances were positively correlated. The multiomics analysis identified the metagenomic and metabolomic characteristics to differentiate halitosis from healthy individuals using the least absolute shrinkage and selection operator logistic regression and random forest classifier. A total of 19 species and 39 metabolites were identified as features in halitosis patients, which included indole-3-acetic acid, Bacillus altitudinis, Candidatus Saccharibacteria, and Actinomyces species. In conclusion, an evident shift in microbiome and metabolome characteristics was observed in the halitosis tongue coating, which may have a potential etiological significance and provide novel insights into the mechanism for halitosis.

Funder

Shanghai Ninth People's Hospital Physicians in Clinical Research Training Program

Shanghai Municipal Health Commission

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3