Preliminary Surface Analysis of Etched, Bleached, and Normal Bovine Enamel

Author:

Ruse N.D.1,Smith D.C.1,Torneck C.D.2,Titley K.C.3

Affiliation:

1. Center for Biomaterials, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, Canada M5G IG6

2. Department of Endodontics, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, Canada M5G IG6

3. Department of Pediatric Dentistry, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, Canada M5G IG6

Abstract

X-ray photoelectron spectroscopic (XPS) and secondary ion-mass spectroscopic (SIMS) analyses were performed on unground un-pumiced, unground pumiced, and ground labial enamel surfaces of young bovine incisors exposed to four different treatments: (1) immersion in 35% H2O2 for 60 min; (2) immersion in 37% H 3PO4 for 60 s; (3) immersion in 35% H2O2 for 60 min, in distilled water for two min, and in 37% H3PO 4 for 60 s; (4) immersion in 37% H3PO4 for 60 s, in distilled water for two min, and in 35% H2O2 for 60 min. Untreated unground un-pumiced, unground pumiced, and ground enamel surfaces, as well as synthetic hydroxyapatite surfaces, served as controls for intra-tooth evaluations of the effects of different treatments. The analyses indicated that exposure to 35% H2O2 alone, besides increasing the nitrogen content, produced no other significant change in the elemental composition of any of the enamel surfaces investigated. Exposure to 37% H3PO4, however, produced a marked decrease in calcium (Ca) and phosphorus (P) concentrations and an increase in carbon (C) and nitrogen (N) concentrations in unground un-pumiced specimens only, and a decrease in C concentration in ground specimens. These results suggest that the reported decrease in the adhesive bond strength of resin to 35% H 2O2-treated enamel is not caused by a change in the elemental composition of treated enamel surfaces. They also suggest that an organic-rich layer, unaffected by acid-etching, may be present on the unground un-pumiced surface of young bovine incisors. This layer can be removed by thorough pumicing or by grinding. An awareness of its presence is important when young bovine teeth are used in a model system for evaluation of resin adhesiveness.

Publisher

SAGE Publications

Subject

General Dentistry

Reference7 articles.

1. Eisenmann, D.R. (1985); Enamel Structure, In: Oral Histology, Development, Structure and Function, A.R. Ten Cate, Ed. St. Louis: Mosby , pp. 198-215,

2. The identification and characterization of a calcified layer of coronal cementum in erupted bovine teeth

3. Surface Characteristics of Hydroxy apatite and Adhesive Bonding. I. Surface Characterization

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3